OK論壇

 找回密碼
 註冊
查看: 653|回復: 0

雅可比

[複製鏈接]
  • TA的每日心情
    開心
    2018-12-14 06:21 PM
  • 簽到天數: 123 天

    連續簽到: 2 天

    [LV.7]常住居民III

    發表於 2009-8-15 15:50:02 | 顯示全部樓層 |閱讀模式
    Jacobi(1804∼1851),出生於德國 Potsdam,卒於柏林。他對數學主要的貢獻是在橢圓函數及橢圓積分上,並把這些理論應用在數論上而得到很好的結果。 雅可比很早就展現了他的數學天份。他從歐拉及 Lagrange 的著作中學習代數及微積分,並被吸引到數論的領域。他處理代數問題的手腕只有歐拉與印度的 Ramanujan 可以相提並論。 Jacobi 少 Abel 兩歲。他不知道 Abel 從1820年起就在作五次式的問題,他也去作,但是沒有完滿的結果。 年輕的時候,Jacobi 有許多發現都跟高斯的結果重疊,但高斯並沒有發表這些結果。高斯很看重雅可比,1839年 Jacobi 還去拜訪了高斯。1849年45歲的時候,除了高斯之外,Jacobi 已經是歐洲最有名的數學家了。 複數函數(單變數)是十九世紀的一個大領域。高斯已經証明了:要解一個代數方程,我們必需要複數,而這也是充分的。是否還有其他的「數」呢? 橢圓函數理論是與複變函數論互為補充的理論。橢圓函數的一個主宰性質是他的雙周期性,1825年被 Abel 發現的。若 E(x) 為一橢圓函數,則有兩個相異的數 p1、p2 使



    Jacobi 應用橢圓函數論到整數論的問題上,他証明了 Fermat 宣稱的:每個整數 1, 2, 3, ... 都可以寫成整數(包含 0)的平方和,而且他還能算出共有幾種方法。當 n 為奇時,有 n 的所有因數(包括 1 及 n)之和的 8 倍個方法;當 n 為偶時,有 n 的所有奇因數之和的 24 倍個方法。 他在數學物理上也有番建樹,在量子力學中他的 Hamilton-Jacobi 方程扮演了一個革命性的角色。
    回復

    使用道具 舉報

    您需要登錄後才可以回帖 登錄 | 註冊

    本版積分規則

    Archiver|手機版|小黑屋|OK討論區

    GMT+8, 2025-6-28 03:14 AM , Processed in 0.102498 second(s), 20 queries , Gzip On.

    Powered by Discuz! X3.4

    Copyright © 2001-2020, Tencent Cloud.

    快速回復 返回頂部 返回列表